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In this paper the authors present a new option pricing scheme which deals with a
nonconstant volatility for the price of the underlying asset. The main feature of the
proposed pricing scheme consists of exploiting recent developments about Bayesian
learning within the artificial neural networks framework. Indeed, the Bayesian learning
approach allows the data to speak for itself, i.e., to make a few general assumptions
about the process to be modeled and to exploit all the available data concerning the
price of traded options for modeling the implied volatility surface. The nonparametric
model of the implied volatility surface, obtained through an infinite feedforward neural
network and by exploiting the Bayesian formulation of the learning problem, is used
within the proposed option pricing scheme. This pricing scheme relies upon the
Dupire formula, which maps the implied volatility surface to the corresponding local
volatility function. Numerical experiments for the case of the USD/DM over-the-
counter options are presented together with a graphical analysis of the resulting
smiles which attest to the effectiveness of the overall approach to option pricing.

1. INTRODUCTION

The Black—Scholes option pricing formula (see Black and Scholes 1973) assumes
that the risk-free interest together with the volatility of the underlying asset
remain fixed at given and constant levels over the life cycle of the option. This
simplifying assumption, which can be considered true for short maturity
options, has been under severe judgement from practitioners in the last decade,
especially in cases where the maturity increases. Indeed, the observed volatility
smile effect (i.e., options written on the same underlying asset usually trade with
different implied volatilities) witnesses that such an assumption is too restrictive
and less plausibly verified as the maturity increases. Furthermore, the presence
of a time effect is suspected. Indeed, in the Foreign Exchange market, options
with longer maturities typically trade at higher implied volatilities than options
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with shorter maturities. This evidence is not consistent with the constant
volatility assumption of the Black—Scholes option pricing formula and may be
motivated by the presence of fat tails for the risk-neutral distribution (i.e.,
extreme values for the prices are more likely than expected according to the
lognormal probability distribution model). A lot of effort has been devoted to
addressing the Black—Scholes option pricing simplification either by allowing the
interest rate and volatility to be time dependent or by introducing an interest rate
and volatility that are stochastic. However, these approaches suffer from both
theoretical and practical problems. In particular, the stochastic volatility
approach, which has been pursued by many researchers (see Heston 1993;
Dupire 1994; Avellaneda er al. 1997, Derman and Kani 1998; Fouque,
Papanicolaou, and Sircar 2000), uses a stochastic volatility model which requires
the practitioner to cope with complex and difficult to verify assumptions about
the underlying price process.

In this paper the authors propose a data-driven option pricing scheme which
overcomes several of the above-mentioned limitations by leaving the data to
speak about the underlying price process. Indeed, the proposed pricing scheme
allows us to price complex option contracts, as well as options traded on illiquid
markets, by exploiting only the information coming from the market data. The
main idea underlying the pricing scheme is to let the data speak for itself, that is,
to make a few general assumptions about the process to be modeled and to
exploit all the available data coming from the prices of traded options to extract
information about the underlying price process (i.e., the local volatility function)
through the implied volatility data associated with the option contract. This
approach relies upon the Dupire (1994) formula which maps the implied
volatility surface to the corresponding local volatility function. The implementa-
tion of this mapping requires the availability of the implied volatility for any pair
consisting of a strike and a time to maturity in a given range and therefore
cannot be directly applied to the usually available implied volatility data. This
limitation can be overcome by approximating the implied volatility surface.
Unfortunately, this is not an easy task for the following two main reasons:

1. The implied volatility surface is thought to be very complex;

2. Option price data suffers from paucity (i.e., few data points can be collected
for different strikes and maturities even in more liquid markets).

While the first reason suggests that a nonparametric approach should be
appropriate to cope with the implied volatility approximation task, the second
one warns about the possible overfitting of the few data points at hand. In order to
deal with these problems, the authors investigate the use of feedforward neural
networks (FNNs) (White 1989; Bishop 1995) together with the Bayesian learning
scheme (McKay 1992). Indeed, while FNNs allow us not to a priori restrict the
complexity of the function to be approximated, the Bayesian learning scheme
carefully evaluates the extent to which the available flexibility/complexity, offered
by the nonparametric model (FNN), is used. Numerical approaches to option
pricing using artificial neural networks as well as nonparametric models have
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been proposed and investigated by other researchers (see, e.g., Hutchinson, Lo,
and Poggio 1994; Yacine 1996).

Once an estimate for the local volatility function is available, the underlying
price process is fully described and therefore the option pricing process can be
carried out. The pricing process can be accomplished using one of a number of
approaches, namely, binomial trees, trinomial trees, or Monte Carlo scenario
generation. Of these, the authors recommend the use of the trinomial tree
approach (see Avellaneda and Paras 1996), which has the maximum flexibility in
that it allows the modeling of an underlying price process with both stochastic
volatility and stochastic drift.

The rest of the paper is organized as follows. The proposed option pricing
scheme is presented and the main computational steps discussed in Section 2.
Section 3 is devoted to the numerical evaluation of the option pricing scheme
performed using data from the over-the-counter USD/DM currency options
market. Finally, in Section 4, conclusions and directions for further research are
presented.

2. THE OPTION PRICING SCHEME

The proposed pricing scheme, which is shown in Figure 1, consists of the
following five steps:

implied volatility modeling (IVM);

option price computation (OPC);

local volatility computation (LVC);

model discretization (MD);

A

general contingent claims pricing (GCCP).

These are described in detail in the following sections.

Feedforward
neural
network
Implied volatility VM Approx?rpatc mpllcd OPC
dataset volatility surface
Prices
surface

ComPuted (GCCF) ( MD) «| Local volatility ( LVC)
prices surface

FIGURE 1. Pricing scheme: the boxes represent input or computed quantities, while
rounded boxes are the computational steps of the pricing scheme.
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2.1 Implied Volatility Modeling (IVM Step)

This section describes how FNNs, together with Bayesian learning, can be
exploited to solve the problem of implied volatility surface approximation. An
FNN (see Figure 2) is a layered structure consisting of computing units, named
artificial neurons (circles), and connections between neurons, named synapses
(directed links) (Bishop 1995). Artificial neurons of the input layer are associated
with the independent variables or input variables, while the output neurons are
associated with the response variables or output variables. Synapses are oriented
connections linking the neurons from the input layer to the neurons of the
hidden layer and the neurons from the hidden layer to the output neurons. The
network’s structure implies that the information flows from neurons in the lower
layers to those in the higher layers and cannot flow between the neurons in the
same layer or from neurons in a higher layer to those in a lower layer.

Without loss of generality, here and in the rest of the paper, artificial
feedforward neural networks with only one response variable are considered.
The FNN’s graphical structure dictates that, for any given input, the corres-
ponding output value is obtained through propagation from the input layer to
the hidden layer and then from the hidden layer to the output neuron. The
strength of the synapse from neuron i to neuron j is determined by means of a
real value named weight. Furthermore, each neuron j from the hidden layer (and
eventually the output neuron) are associated with a real value named the
neuron’s bias or threshold and with a nonlinear function named the transfer or
activation function.

In order to formally describe the structure of a FNN and how, given an input
vector, the network’s output is computed, consider the FNN shown in Figure 2
consisting of I input variables, m neurons in the hidden layer, and a single
output neuron.

X2

Input neurons
=

Output
neuron

Xi

i)
Wim

FIGURE 2. Single layer feedforward neural network: a single layer FNN consisting of /
input neurons, m hidden neurons, and one output neuron together with its adjustable
parameters, i.e., weights and biases.
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We let:

e x =(xq,...,x;) be the input vector;

° wfll) be the weight for the synapse from the ith input to the jth hidden neuron;
° bgl) be the bias associated with the jth neuron of the hidden layer;

. w(jz) be the weight from the jth hidden neuron to the output neuron;

e b be the bias associated with the output neuron.

Furthermore, let GV(+) and G (-) be the activation functions associated with

hidden and output neurons, respectively. Typical choices for the activation
function include the following:

losistic si i _ 1
ogistic sigmoi G(2) v 1)
and
hyperbolic tangent G(z) = E 2)
yp g S tet
Finally, we let
0= ) D W@ 6 (3)

and assume that the activation functions G(-) and G®(+) are given. Then the
network in Figure 2 computes the following function of the input vector x:

m !
j(x, 0) = 6@ (Z[w?g“) <Z wi'lx, — b§”>] -~ b(2)>. @)
j=1 i=1

J=

FNNs are data-driven models (Hertz, Krogh, and Palmer 1991; Kung 1993) in
the sense that they make no assumptions about the nature of the function to be
approximated but instead use only the available data to build such an
approximation. This computational model has proved to be useful and effective
for solving several classes of problems (Fu 1982; Gader et al. 1991; Chen, Chen,
and Lin 1996).

The main property of FNNGs is that they are universal approximators in the
sense described by Cybenko (1989), Hornik, Stinchombe, and White (1989), and
White (1989, 1990). This property establishes that FNNs, with as many as one
hidden layer and sigmoid activation functions, are capable of approximating to
any degree of accuracy any mapping between independent variables and
response variables as the size of the data set describing the data genmerating
process (DGP) and the number of neurons of the hidden layer go to infinity.

Even though today the limitation in the number of available neurons is less
keenly felt due to technological enhancements and cost reduction, the problem
of paucity of data is still the main concern. Indeed, in actual applications, data
are difficult and expensive to get and for this reason it is important that the
FNN model be data-efficient, that is, squeeze maximum information out of few
data.

Volume 4/Number 1, Fall 2000
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Unfortunately, the universal approximation property enjoyed by FNNs is an
asymptotic result of no help in actual problems in which, quite to the contrary,
an increase in the number of parameters too often leads to overfitting and
overparametrization. The process through which the approximation is obtained,
starting from the available data set, is often called learning and requires several
complex and interconnected tasks such as:

1. network structure selection, i.e., the selection of the optimal number of hidden
layers together with the selection of the optimal number of neurons associated
with each hidden layer;

2. network training, i.e., the selection of the optimal values for the FNN’s
adjustable parameters;

3. activation function selection, i.e., the selection of the functional form for the
activation function associated with each neuron.

Cross-validation, i.e., the hold-out method, minimum description length
(Rissanen 1996), Vapnik—Chervonenkis dimension (Vapnik 1995, 1998), and
Bayesian learning are the main approaches for learning in FNNs. Of these the
hold-out method and Bayesian learning are probably the most often utilized in
practice.

According to the hold-out method (Stone 1974; Wahba and Wold 1975;
Bishop 1995), various networks are trained by minimization of an appropriate
error function defined with respect to a training set. The performance of the
networks is then compared by evaluating the error function using an independ-
ent validation set, and the network having the smallest error, with respect to the
validation set, is selected. Since this procedure can itself lead to overfitting of the
validation set, the performance of the selected network should be confirmed by
measuring its performance on a third independent set of data called the fest set.

In contrast, the Bayesian framework (McKay 1992; Bishop 1995) allows us to
deal with the above-mentioned tasks contemporaneously without making any
strong prior assumption about the complexity of the function to be approxim-
ated. The Bayesian formulation of the learning problem in FNNs considers a
prior distribution p(6), over the network’s vector @ of adjustable parameters,
defined through the formula (3), which expresses some general properties, such
as smoothness, for the function to be approximated, and the likelihood p(x | 0)
of the data set x given the parameters vector 6, which models the noise process
associated with the response variable. Once the data set x has been observed the
posterior probability distribution p(6 | x) of the parameters vector 6, given the
available data set x, can be computed, according to the Bayes theorem, as
follows:

(0] ) = X1 0rO) 5)
()

According to the Bayesian framework, a trained network is described in terms of
its posterior probability distribution p(€ | x). Indeed, the posterior probability
p(@ ] x) of the network’s parameters vector 0, given the available data set y,

Journal of Computational Finance
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implements the learning process and fully describes the network’s output over
the input space. The main reasons motivating the Bayesian formulation of the
learning problem are the following:

1. All the available data points can be exploited for solving the learning
problem.

2. The complexity of the function to be approximated should not be strongly
constrained in advance but can be automatically selected according to the
evidence coming from the available data set.

3. It provides a unifying framework for data modeling and allows us to develop
probabilistic models that are well matched to the data and therefore allow us
to make optimal predictions.

4. Bayesian methods are mechanistic: once the model space has been defined,
the rules of probability theory give a unique answer which takes into account
all the given information.

5. Bayesian inference satisfies the likelihood principle in that inferences depend
only on the probabilities assigned to the data and not on properties of other
data sets which could have occurred but did not.

6. Probabilistic modeling handles uncertainty in a natural manner. There is a
unique prescription for incorporating uncertainty about parameters into
predictions of other variables, namely, marginalization.

7. Bayesian model comparison embodies Occam’s razor, the principle that states
a preference for simple models over complex ones.

In particular, points 1 and 2 make it very interesting to evaluate how the
Bayesian learning framework in FINNs can be exploited in order to solve the
nonparametric estimation problem of the implied volatility surface. Indeed, in
such a case, the main problems of the approximation task are the complexity of
the function to be approximated, i.e., the implied volatility surface, and the data
paucity, i.e., the scarce availability of data points even for more liquid option
markets.

Before introducing and describing the FINN model used to approximate the
implied volatility surface, a discussion of the preprocessing step concerning the
option data is needed. Indeed, it is well known that the available implied
volatility data depends on the strike price and time to maturity as well as on the
cost-of-carry, i.e., the interest rate minus the dividend rate. The dependence on
the cost-of-carry can be misleading and, therefore, transforming the data, i.e.,
the strike price, in such a way that the drift of the interest rate and the cost-of-
carry are both zero is recommended. To clarify this point, let K be the strike
price and T be the time to maturity (expressed in years). Then the zero-drift
transformation is of the form

K= f(K,T, p), (©6)

where p and the particular form for the transformation function f depend upon
the particular option contract and therefore will be described in Section 3, where

Volume 4/Number 1, Fall 2000
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=X

- Output
neuron

Input neurons

Hidden
layer

FIGURE 3. Single layer FNN: the FNN model used for the approximation of the
implied volatility surface (K, T).

the case of USD/DM options is analyzed. According to the transformation (6),
the implied volatility, computed on mid-market prices by means of the Black—
Scholes formula, is denoted by X(K, T).

The FNN model used to approximate the implied volatility surface (K, T)
(Figure 3) consists of two input neurons (I = 2) associated, respectively, with the
adjusted strike price K and time to maturity 7, 20 hidden neurons (m = 20) with
logistic activation function (1), and one output neuron, associated with the
approximated implied volatility surface ﬁ([% , T), with logistic activation func-
tion (1). Let

— (D) (1) (1) Q) (1) Q) 2 L@
0= (Wi, s Wings Wy ey Wangs By s byg, wi7s o iy, Py (7

be the network’s adjustable parameters vector. Then the FNN in Figure 3
computes the following function of the input variables K and T

20 —1
A~ 1
S(K,T)=|1+ex <—§ {w@[ _ :|—b(2)}):| .
D [ P 1+ exp-uP K — w07+ 57)

J=1 J
(®)

The learning problem has been formulated according to the approach named
infinite networks introduced by Neal (1996). With this approach the prior
distribution of the FNN’s adjustable parameters vector @ is assumed to be of
the form

p(0) = Zioexp(—ﬁanoné), ©)

where Zy = fexp(—%a||0||§) d0 is a normalization factor which ensures that
| p(6)d6 = 1, and «, called a hyperparameter, allows us to automatically control
the complexity of the FNN. The 1/a term represents the variance of the
Gaussian distribution associated with the network’s adjustable parameters
and controls the penalty associated with the network’s complexity/flexibility.

Journal of Computational Finance
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The likelihood has the following form:

1 Do N
P10 = 5exp( <Y NEK, 7,,0) - HRLTF). (10
n=1

X

where ZA‘(I?,“ T,,0) represents the output for a network with parameters vector 0,
Z,= fexp{—zﬁ anl Z‘(Kn, . 0) — X(K,, T,)]’} d0 is a normalization factor,
B is the hyperparameter controlling the extent to which the FNN’s degrees of
freedom are used to fit the data points, and D represents the number of data
points used to accomplish the learning process. In particular, 1/8 represents the
noise level associated with the unknown function to be approximated.

Once the prior distribution and the likelihood have been specified, it is
possible to obtain the posterior distribution p(@ | x) by substituting (9) and (10)
in (5):

D
p01 0 =5-exp(~45 Z2(1€n,Tn,0)—2(1€n,Tn>12—%anoné), (in

where

D
ZS = Jexp( Z E(Kn, E(Knv T, )] %Ol”@”%) de

The posterior distribution (11) fully describes the FNN model which approx-
imates the implied volatility surface and therefore is the result of the learning
process.

The task of computing the posterior distribution (11) is extremely complex
and can be solved through both approximation methods, as proposed by
McKay (1992), or by means of direct sampling through the Markov chain
Monte Carlo (MCMC) approach, as proposed by Neal (1996).

2.2 Option Prices Computation (OPC Step)

This computational step allows one to go from the approximated implied
volatility ZAJ(I?, T), for each adjusted strike price K and time to maturity 7, to
the corresponding call option price C.

For computational purposes, we need to evaluate the approximated implied
volatility Z:‘(I?, T) for the input pairs (lgl, 7,) constrained so as to belong to a
discrete d x d square grid KX ® 7 defined as follows:

K=1{keR": kpyp <k <kpayls T={reR":0<t<T}.

Notice that the grid K ® 7 consists of all the ordered pairs (k;, 7,) where
I,r=1,...,d. According to this discretization, the computation of the call
option prices is performed on a d x d grid via the Black—Scholes formula, i.e.,
for each pair (lgl, T,) € K® T, the corresponding call option price is computed as
follows:

c, = S®(d) —k®(d,) Yir=1,....d, (12)
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with

_ In(S/k) + 37,50k, 7,)° _ In(S/k) — 37,20k, 7,)°
RSN I (AN

where S represents the market spot price associated with the underlying security
and ®(-) represents the standard normal cumulative distribution function.

! . (13)

2.3 local Volatility Computation (LVC Step)

This section describes how the Dupire formula can be exploited for computing
the local volatility function by means of the approximated implied volatility
surface. Indeed, by assuming that the underlying security S follows a risk-
neutral process of the form

d—SS = w(t)dt + o(S, ) dw, (14)

where u(t) represents the cost-of-carry and o(S, t) is the local volatility function,
Dupire (1994) has shown that the conditional probability distribution of the
price and the local volatility function can be computed as explicit functions of
the derivatives of the price function with respect to the strike price and the time
to maturity. Notice that, according to the Dupire approach, the volatility o(S, t)
is assumed to be a deterministic function of both the time ¢ and the underlying
price S. The Dupire formula can be viewed as a useful tool for computing the
local volatility function starting from the option prices. In order to clarify this
point, let C(S, K, T) be the call option price associated with the underlying price
S, the adjusted strike price K, and the time to maturity 7, and assume that the
cost-of-carry is zero. Then the Dupire formula states that

0 ~
—C(S, K, T
3T (S,K,T)
9 -
1g2_—_C(S, K, T

o(S, ) = (15)

and therefore allows us to compute the local volatility o;, associated with any
given pair (k;, 7,) € K ® 7, as follows:

9ir
%klzflr

o, =o(s;, t,) = Vi,br=1,...,d, (16)

where g, represents the first derivative of the call option price with respect to the
time, while f, represents the second derivative of the call option price with
respect to the adjusted strike price, and where both derivatives are evaluated for
the pair (Igl, T,).

Notice that even if the new pairs (s;, t,) range over the same set K ®T as the
pairs (lgl, 7,), they assume a completely different meaning. Indeed, they represent,
respectively, the level of underlying S (not the adjusted strike price K) and the

Journal of Computational Finance



A Bayesian approach for constructing implied volatility surfaces

time ¢ (not the time to maturity 7). The importance of this transformation lies in
the fact that it allows a shift from a measure of global volatility (implied
volatility) to a measure of local volatility and, therefore, to distinguish each node
of the grid according to its proper local volatility value describing the underlying
security process (14).

2.4 Model Discretization (MD Step)

The model discretization step allows one to compute the prices of general
contingent claims whose underlying process is described by (14). In principle,
this computation could be performed using several approaches like binomial
trees, trinomial trees, and Monte Carlo scenario generation. Of these, the
authors recommend the use of the trinomial tree approach (Avellaneda and
Paras 1996).

The trinomial tree (Figure 4) achieves the maximum flexibility, i.e., it allows
one to model an underlying price process (14) with both stochastic volatility and
stochastic drift. Stability, calibration, and convergence conditions (Avellaneda,
Levy, and Paras 1995) allow for the definition of the trinomial tree parameters in
such a way as to guarantee that the discrete approximation of the price process
effectively assigns to each distinct level of S and ¢ the corresponding volatility
value. The parameters used for such a computation are expressed through the
following formulas (Rebonato 1999; Avellaneda and Laurence 2000):

pu:%p(l_%amax‘At)’ pm:l_p’ pd:%p(l-i-%dmax At)’
(17)

Sy = exp(omaxVAL), Smo=1, sq = exp(—omaVAL), (18)

where At represents a (small) time interval between successive shocks, measured
in years, while o,,,, = max;.{o;,} is the maximum value of the local volatility to
be modeled.

In order to better clarify the contents of the model discretization, the basic
steps for determining the option price from the local volatility are described in
detail. To this end, the contract is characterized in terms of its time to maturity
T, measured in years, its underlying price S, the number of periods N, and the
adjusted strike price K. The quantity At = T/N can be computed, and therefore
anew QM+ 1) x (N+1) (M = |6+/N]) grid describing the dynamics of the
prices from the current time ¢t = 0 to maturity t = T according to formulas (17)
and (18) is defined. This grid is a function of two indices: n =1,..., N+ 1 and

FIGURE 4. Trinomial tree: a representation of the trinomial tree (single period).
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A=1,...,2M + 1. The first index represents the time ¢, while the second index
identifies the price s, of the underlying security. Each node of the grid is
distinguished by a pair (s, t,,) whose values are defined as follows:

s = exp(—Mgmax\/E) PEEE
e < sy = exp[—(M—A+ l)amax«/E] < e
< oMyl = exp(MO'max\/A—t)v (19)

h=0<---<ty,=m—DAt <--- <ty =T. (20)

Each node of the grid is associated with its own local volatility. It is worth
observing that the nodes of this new grid are not necessarily coincident with
those belonging to the grid KeT. Consequently, a linear interpolation between
the local volatility values o, =o(s;,t,) (,r=1,2,...,d), computed on the
discrete d x d square grid K ® T, is needed to implement the corresponding
mapping on the values 6;, = o(s;, t,) to assign them to the new (2M + 1)x
(N + 1) grid for pricing purposes.

Another extrapolation problem has already been introduced for the local
volatility surface in the price direction. Indeed, the levels of the underlying price
s, are not a priori controllable because they are defined using the formula (19),
and so they can lie outside the range K. This problem is different from that of
the time extrapolation on the implied volatility surface, which we solved through
a direct extrapolation on the forecasting function defined by means of the neural
network. The extrapolation of the local volatility in the price direction is
required for nodes that lie outside the domain K. According to the particular
nature of the problem to be solved (see the numerical experiments section), the
authors adopted a solution that assumes constant volatility levels for those
prices lying outside the domain K. This policy is particularly important because
it avoids the introduction of subjective biases.

Pricing contingent claims on the trinomial tree is a straightforward applica-
tion of the backward induction rule. Indeed, the value of the option for any
given time f, and underlying value s, is obtained by discounting the expected
value of the option payoff at time ¢, for the underlying prices s, ., s;, and s;_
with respect to the probability measure (p,, pm, Pq)- The probabilities p,, pm, Pd
are functions of the local volatility of the node 4,, = o(s;, t,) according to the
following formulas:

A2 A2 ~2
O’M] 1 / Glﬂ O—)”'I 1 /
Pu = 5 (1 — 30max At)v Pm = 1- 5> Pd= > (1 + 7O0max At)-
204, o, 204,
max max max

e2))

Starting from n = N and moving backward to n = 1, the contingent claim price
VIMH = V(sy41,t1, K) can be computed according to the following recursive
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formula:

Vi = exp(=romAD| Vil pu + Vi1 pm + Vi pal (22)
where ‘}1%/+1 = V(s;, Nt K) (A =1,...,2M + 1) represents the payoff to matur-
ity of the considered contingent claim, for the adjusted strike K and for the
underlying price s,. Then, for a call option,

Vi =0 —K" r=1,....2M+1 (23)
and, in a similar way, for a put option,
Vi =K—s)", a=1,....2M+1. (24)

For those nodes which lie on the border of the grid, where the tree is binomial,
the value is computed as

51 52 03 2M+l 5OM M-I

Vo =2Vp—Vy, VM —qpIM _yIMEl N (29)

In the recursive scheme, the discounting factor exp(—rpy At) appears, given that
we are in the real market with the last adjustment.

3. USD/DM OPTION PRICING

This section is devoted to the evaluation of the proposed option pricing scheme
for USD/DM over-the-counter options, where data for the date of 23 August
1995 is considered. The evaluation of the case under study has been performed
using the BLINNBOP software environment, which consists of the following
modules:

1. Bayesian learning in neural networks (BLINN): this module, written in C,
implements the Markov chain Monte Carlo (MCMC) solution procedure for
the Bayesian learning problem on FNNs allowing one to perform the IVM
step.

2. Bayesian option pricer (BOP): this module, which is written in MATLAB,

receives the input from the BLINN module and implements the
computational steps (OPC, LVC, and MD) to obtain the final option prices.

3. Pricing analyzer (PA): this module, which is written in MATLAB, allows the
comparison of the original option prices with the option prices obtained
using the proposed pricing scheme.

The three BLINNBOP software modules should be used in a strictly sequential
fashion. The BLINN module allows us to approach the IVM computational
task and to perform several statistical tests for checking the FNNN model’s
significance. Once the FNN model is considered statistically significant, it can be
automatically linked to the BOP software module. The BOP module exploits the
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FNN model developed through the use of the BLINN module and enables three
of the five steps of the option pricing scheme, namely, the OPC, the LVC, and
the MD to be performed. At this stage, the BLINNBOP GUI allows for the
pricing of general contingent claims. For each contract to be priced, the user
must specify the option type (call, put), the underlying spot price S, the strike
price K, the number of periods N, and the time to maturity 7. Finally, the PA
module, which offers its own GUI, allows one to compare the computed option
prices with the prices from the market.

3.1 The Option Data Set

This section presents the main characteristics of the option data set used to
investigate the performance of the proposed option pricing scheme. Further-
more, the transformation to be applied to the option data set, so that both the
drift of the interest rate and the drift of the cost-of-carry are zero, is
introduced. The option data set, presented in Table 1, is borrowed from
Avellaneda and Paras (1996) and corresponds to the US dollar-Deutschmark

TABLE 1. USD/DEM OTC options: August 1995.

Maturity Type Strike Bid Ask Mid Ivol
Call 1.5421 0.0064 0.0076 0.0070 14.9
Call 1.5310 0.0086 0.0100 0.0093 14.8
30 days Call 1.4872 0.0230 0.0238 0.0234 14.0
Put 1.4479 0.0085 0.0098 0.0092 14.2
Put 1.4371 0.0063 0.0074 0.0069 14.4
Call 1.5621 0.0086 0.0102 0.0094 144
Call 1.5469 0.0116 0.0135 0.0126 14.5
60 days Call 1.4866 0.0313 0.0325 0.0319 13.8
Put 1.4312 0.0118 0.0137 0.0128 14.0
Put 1.4178 0.0087 0.0113 0.0100 14.2
Call 1.5764 0.0101 0.0122 0.0112 14.1
Call 1.5580 0.0137 0.0160 0.0149 14.1
90 days Call 1.4856 0.0370 0.0385 0.0378 13.5
Put 1.4197 0.0141 0.0164 0.0153 13.6
Put 1.4038 0.0104 0.0124 0.0114 13.6
Call 1.6025 0.0129 0.0152 0.0141 13.1
Call 1.5779 0.0175 0.0207 0.0191 13.1
180 days Call 1.4823 0.0494 0.0515 0.0505 13.1
Put 1.3902 0.0200 0.0232 0.0216 13.7
Put 1.3682 0.0147 0.0176 0.0162 13.7
Call 1.6297 0.0156 0.0190 0.0173 13.3
Call 1.5988 0.0211 0.0250 0.0226 13.2
270 days Call 1.4793 0.0586 0.0609 0.0598 13.0
Put 1.3710 0.0234 0.0273 0.0254 13.2
Put 1.3455 0.0173 0.0206 0.0190 13.2
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TABLE 2. Market parameters.

Description Symbol Value
Spot price S 1.4885 DM
DM interest rate DM 4.27%
USD interest rate rUsD 5.91%

(USD/DM) over-the-counter (OTC) options for 23 August 1995. This data set
consists of 25 option prices corresponding respectively to 20, 25, and 50 delta
puts and calls, with expiration dates of 30, 60, 90, 180, and 270 days,
respectively, i.e., T =30, 60, 90, 180, 270. The implied volatility (Ivol) is
reported in the last column. The data listed in Table 1 depends on the
following market parameters: spot price S, DM interest rate rpy, and USD
interest rate rygp whose values are reported in Table 2.

According to formula (6) in Section 2, the following transformation allows
one to obtain zero drift and zero cost-of-carry:

K= f(K,T,p)= f(K,T,rusp — rom) = Kexpl(rusp — rom)T]. (26)

The new data set, obtained via the application of the transformation (26) to the
data reported in Table 1, is given in Table 3 and represents the data set (D = 25)
used for solving the learning problem.

3.2 Implied Volatility Modeling (IVM Step)

The FNN used to approximate the implied volatility surface X(K, T) is a single
layer neural network consisting of two input neurons (I = 2), associated
respectively with the adjusted strike price K and the time to maturity T,
20 hidden neurons (m = 20) with logistic activation functions (1), and one
output neuron, associated with the approximated implied volatility surface
ﬁ([g , T), with logistic activation function (1).

The approximation of the implied volatility surface, computed via the FNN,
is shown in Figure 5. Notice that the learning data set is obtained from the data
reported in Table 3 by dividing the implied volatility (Ivol) by 100 and by
transforming the time to maturity (Maturity) on a year basis, i.e., dividing the
time to maturity by 360.

In order to highlight the systematic behavior of the market with respect to the
term structure (changes in volatility due to maturity fluctuations) and the strike
structure (changes in volatility due to strike price fluctuations), it is interesting to
analyze some sections of the approximated implied volatility surface shown in
Figure 5.

The behavior of the approximated implied volatility surface with respect to
the time to maturity is depicted in Figure 6 while the cross-section of the
approximated implied volatility surface in Figure 7 allows one to investigate
graphically the behavior of the approximated implied volatility with respect to
the adjusted strike price.
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TABLE 3. USD/DM OTC options (zero drift and zero cost-of-carry).

Maturity Type Adjusted strike Bid Ask Mid Ivol
Call 1.544209 0.0064 0.0076 0.0070 14.9
Call 1.533094 0.0086 0.0100 0.0093 14.8
30 days Call 1.489234 0.0230 0.0238 0.0234 14.0
Put 1.449880 0.0085 0.0098 0.0092 14.2
Put 1.439065 0.0063 0.0074 0.0069 14.4
Call 1.566376 0.0086 0.0102 0.0094 14.4
Call 1.551134 0.0116 0.0135 0.0126 14.5
60 days Call 1.490669 0.0313 0.0325 0.0319 13.8
Put 1.435117 0.0118 0.0137 0.0128 14.0
Put 1.421681 0.0087 0.0113 0.0100 14.2
Call 1.582877 0.0101 0.0122 0.0112 14.1
Call 1.564401 0.0137 0.0160 0.0149 14.1
90 days Call 1.491703 0.0370 0.0385 0.0378 13.5
Put 1.425533 0.0141 0.0164 0.0153 13.6
Put 1.409567 0.0104 0.0124 0.0114 13.6
Call 1.615695 0.0129 0.0152 0.0141 13.1
Call 1.590892 0.0175 0.0207 0.0191 13.1
180 days Call 1.494505 0.0494 0.0515 0.0505 13.1
Put 1.401647 0.0200 0.0232 0.0216 13.7
Put 1.379465 0.0147 0.0176 0.0162 13.7
Call 1.649869 0.0156 0.0190 0.0173 13.3
Call 1.618587 0.0211 0.0250 0.0226 13.2
270 days Call 1.497608 0.0586 0.0609 0.0598 13.0
Put 1.387967 0.0234 0.0273 0.0254 13.2
Put 1.362152 0.0173 0.0206 0.0190 13.2
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FIGURE 5. Approximated implied volatility surface: the FNN approximated implied
volatility surface (K, T) (mesh) and the corresponding learning set (crosses) for the
USD/DM options market.
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FIGURE 6. Term structure for the approximated implied volatility surface: the term

structure highlights a particular shape. Long-term implied volatility is, in general, lower

than the short-term one. Moreover, short-term implied volatility shows higher

unsteadiness than the long-term one due to big changes in volatility values with
respect to different adjusted strike prices.
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FIGURE 7. Strike structure for the approximated implied volatility surface: the strike
structure is characterized by a light smile effect, indeed the implied volatility decreases
when the adjusted strike price increases.
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FIGURE 8. Prices surface: the approximated prices surface.

3.3 Option Price Computation (OPC Step)

The output of this computational step is the so-called prices surface (Figure 8)
which has been obtained using a spot price S = 1.4885 synchronously observed
on the market together with the other data (Tables 1 and 2).

3.4 Local Volatility Computation (LVC Step)

The third computational step allows one to compute the local volatility surface
together with its first derivative with respect to time to maturity 7 (Figure 9) and
its second derivative with respect to the adjusted strike price K (Figure 10). Both
these figures bring valuable information about the numerical properties of the
proposed solution for the option pricing problem.

0.4 -

0.3 1

dc/dr

0.2 4
0.1 k%
0. -

Strike =04
0.2

0.8

Maturity

0

FIGURE 9. First derivative of the call option price C(S, K, T) with respect to time to
maturity.
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FIGURE 10. Second derivative of the call option price C(S,K, T) with respect to
adjusted strike.

From Figures 9 and 10, it is possible to conclude that the computational
model utilized for the LVC step shares nice numerical properties. Indeed, the
two figures show smooth surfaces, suggesting that the derivatives estimated
through the finite-difference scheme seem to provide an accurate approximation
for the true derivatives. A further graphical analysis (Figure 11) of the nature of
the local volatility surface can be performed by exploiting the features of the
BOP software module.

Figures 12 and 13 show the behavior of the term and spot structures (the
adjusted strike price is replaced by the underlying spot price of the local
volatility surface).

0.17

Local volatility

FIGURE 11. Local volatility surface: an approximation of the local volatility surface.
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FIGURE 12. Term structure: a cross-section of the term structure for the approximated
implied volatility surface depicted in Figure 5.

3.5 Model Discretization (MD Step)

The fourth step (MD), performed through the BOP module, allows one to
obtain the approximated local volatility surface shown in Figure 14. Notice that
in Figure 14 the extrapolation is required for those values lying outside the range
K. Indeed, while the initial prices belong to the interval [1.362152, 1.649869],
i.e., the minimum and maximum values for the adjusted strike prices reported in

0.145

0.135

Local volatility
=}
&

01251 \
0.12 —
0.115 L L L L L

1.35 1.4 1.45 1.5 1.55 1.6 1.65
Spot

FIGURE 13. Spot structure: a cross-section of the spot structure for the approximated
implied volatility surface depicted in Figure 5.
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FIGURE 14. Local volatility surface mapping: the approximated local volatility surface
mapped on the trinomial stochastic volatility model.

TABLE 4. USD/DM OTC options: Mid versus computed mid-market option prices.

Maturity Type Adjusted strike Mid Vv Computed mid v )
Call 1.544209 0.0070 0.0069720 +0.4
Call 1.533094 0.0093 0.0091977 +1.1
30 days Call 1.489234 0.0234 0.0235170 -0.5
Put 1.449880 0.0092 0.0091448 +0.6
Put 1.439065 0.0069 0.0068034 +1.4
Call 1.566376 0.0094 0.0094094 —0.1
Call 1.551134 0.0126 0.0125370 +0.5
60 days Call 1.490669 0.0319 0.0321233 -0.7
Put 1.435117 0.0128 0.0127360 +0.5
Put 1.421681 0.0100 0.0099400 +0.6
Call 1.582877 0.0112 0.0111440 +0.5
Call 1.564401 0.0149 0.0147063 +1.3
90 days Call 1.491703 0.0378 0.0382158 —1.1
Put 1.425533 0.0153 0.0152694 +0.2
Put 1.409567 0.0114 0.0115482 -1.3
Call 1.615695 0.0141 0.0140436 +0.4
Call 1.590892 0.0191 0.0193674 —-14
180 days Call 1.494505 0.0505 0.0507525 -0.5
Put 1.401647 0.0216 0.0214272 +0.8
Put 1.379465 0.0162 0.0160380 +1.0
Call 1.649869 0.0173 0.0174038 -0.6
Call 1.618587 0.0226 0.0225322 +0.3
270 days Call 1.497608 0.0598 0.0606372 —-14
Put 1.387967 0.0254 0.0257302 -1.3
Put 1.362152 0.0190 0.0192280 —-1.2
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Table 3, the prices computed by means of the trinomial tree range in the interval

[exp(1-6vR oy 3y )-ex0( 16 o 1 )

and therefore, for the case under study, lie outside the interval K.

The numerical comparison between the market and the computed (estimated)
prices is given in Table 4. The analysis of the results reported in Table 4, i.e., the
quantitative comparison between the market and the computed prices, suggests
that the overall option pricing procedure is capable of accurately computing the
mid-market option price V. Indeed, the relative error §, defined as

8 =100 (V;VV) (27)

is very small, ranging from —1.4% (observations 17 and 23) to 1.4% (observa-
tion 5). This characteristic indicates that the overall option pricing scheme
provides estimates V for the mid-market option prices V which are very close to
those effectively observed on the real market.

Figure 15, the graph of the mid-market option price V versus the computed
mid-market option price v, very closely resembles a 45° straight line lying in the
first quadrant. This shape suggests that, in the case under study, the proposed
option pricing scheme does not introduce any systematic bias for the quantity to
be estimated, namely, the mid-market option price V.
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0.06 A o
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Mid

FIGURE 15. Mid versus computed mid-market option price scatter plot: a scatter plot
for the comparison between the mid-market option price V and the computed mid-
market option price V.
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FIGURE 16. Relative error histogram plot: a histogram plot of the relative error § with
respect to the 25 data points (option contracts).

Inspection of Figure 16 does not reveal any systematic pattern for the relative
error (27). Indeed, it can be noticed that in 14 out of 25 times the mid-market
option price V is underestimated (positive § values) while in the remaining 11
cases the mid-market option price is overestimated (negative § values). Further-
more, even the sequence of the relative errors § along the data point axes does
not show any systematic pattern.

Finally, an interesting property of the proposed pricing scheme emerges from
the joint analysis of the data reported in Tables 3 and 4. Indeed, the computed
mid-market option price V is always contained in the bid—ask interval, thus
reflecting the intrinsic uncertainty of the option market.

4. CONCLUSIONS AND DIRECTIONS FOR FURTHER
RESEARCH

In this paper, the authors propose a new option pricing scheme which exploits
recent developments about learning in FNNs coupled with the Dupire formula.
Indeed, while the Bayesian learning scheme for FNN allows the data to speak
for itself and therefore to develop an accurate approximation of the implied
volatility surface, the Dupire formula provides a mathematical way of comput-
ing the local volatility function from the implied volatility surface. The
numerical experiments, performed using the USD/DM OTC options data,
provide strong empirical evidence in favor of the proposed pricing scheme.
According to this evidence, it seems to be possible to pass from a set of liquid
option prices to a pricing system which allows one to evaluate other derivatives
whose prices are not readily available from the market, i.e., illiquid European
options, American options, and exotic options. Furthermore, the proposed
pricing system can be used for pricing barrier options, where the probability
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of striking the barrier is sensitive to the shape of the smile, creating static hedge
portfolios, pricing exotic options, and generating Monte Carlo distributions for
valuing path-dependent options.
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