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ABSTRACT

Web attacks have become a real threat to the Internet. This paper
proposes the use of autoencoder to detect malicious pattern in the
HTTP/HTTPS requests. The autoencoder is able to operate on the
raw data and thus, does not require the hand-crafted features to be
extracted. We evaluate the original autoencoder and its variants and
end up with the Regularized Deep Autoencoder, which can achieve
an F1-score of 0.9463 on the CSIC 2010 dataset. It also produces a
better performance with respect to OWASP Core Rule Set and other
one-class methods, reported in the literature. The Regularized Deep
Autoencoder is then combined with Modsecurity in order to protect
a website in real time. This algorithm proves to be comparable to
the original Modsecurity in terms of computation time and is ready
to be deployed in practice.
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1 INTRODUCTION

Web attacks are attacks that target the HTTP/HTTPS protocol. The
aim is to evade the Web Application Firewall (WAF) and gain an
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unauthorized access to the proprietary data. There exist hundreds
of web attacks, which can be found in practice [11] . These include
but are not limited to Directory Traversal, SQL Injection, Broken
Authentication and Session Management and Cross-Site Scripting
(XSS). Web attacks are a major threat to the Internet with an av-
erage of 229,000 incidents, detected every single day in 2016 [3].
Given the prominence of this threat, the cybersecurity community
has addressed the attacks on web applications in many different
ways. Signature-based approach operates by searching for a known
identity to detect malicious patterns. It is not efficient in handling
new unknown attacks, whereas maintaining the signature database
can be problematic because the attacks have become increasingly
sophisticated.

Anomaly-based approach can be treated as a pattern classifica-
tion problem, whose objective is to distinguish between the abnor-
mal and benign patterns. Ingham et al. [6] described the Determin-
istic Finite Automata (DFA) induction, which is based on the rules
for reducing variability among queries and heuristic for filtering
anomalies. Kruegel et al. [8] detected web attacks using the attribute
length, character distribution, access frequency, inter-request time
delay and structure of the parameters. Nguyen et al. [10] considered
30 features that are relevant for the detection process. The authors
also applied a so-called Generic-Feature-Selection to extract the
most important features in order to reduce the computational com-
plexity and avoid the problem of curse of dimensionality. Torrano et
al. [16] exploited the expert knowledge to determine actions that de-
viate from the intrusions. The authors worked at the token- rather
than the request level by using the length and the structure of a
given token. Kozik et al. [7] developed a pattern extraction method
for HTTP traffic anomaly detection, which is based on combination
of text segmentation and statistical analysis to capture the struc-
ture of consecutive requests. Rieck and Laskov [14] highlighted
the importance of higher-order n-grams in diminishing unknown
attacks. Using the n-grams and expert knowledge to derive the
features has a potential drawback since they can be circumvented
by the attackers. It is also rather challenging to derive a new set of
features.

Deep learning has recently received an increased interest in
computer security. Liang et al. [9] introduced the Recurrent Neural
Network (RNN) with LSTM and GRU cell structures to learn the
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Figure 1: The architecture of the web anomaly detection using Autoencoder.

normal request patterns. The Multilayer Perceptron (MLP) is sub-
sequently applied to detect anomalies based on the outputs of the
RNN. Yuan et al. [20] developed a deep learning enabled subspace
spectral ensemble clustering approach to divide the anomalies into
several specific clusters, such as SQL injection. Wang et al. [18]
explored CNN and LSTM to detect web attacks. Although deep
learning is observed to produce a better overall accuracy as com-
pared to other traditional methods, it cannot be done with scarce
labeled data. Most deep learning architectures are discriminative.
They require amount of labor to judge whether a request is legiti-
mate or not, which may not be possible to achieve in practice.

This paper is the continuation of the on-going research on web
attacks. Specifically, we present a novel unsupervised learning al-
gorithm, known as autoencoder, whose classification model can be
trained using samples exclusively from the normal data class. As
is the case with deep learning, the autoencoder is able to operate
directly on the raw HTTP/HTTPS requests and does not need the
hand-crafted features to be extracted. We evaluate several autoen-
coder variants on the CSIC 2010 dataset [4] and end up with the
Regularized Deep Autoencoder (RDA) [1]. This algorithm demon-
strates to achieve a better performance with respect to one-class
SVM and the stacked autoencoder when detecting malicious pat-
terns in HTTP/HTTPS queries. We then develop an architecture,
where the RDA is combined with the well-known Modsecurity [15]
to protect a website in real time. This architecture is proved to be
comparable to the original Modsecurity in terms of computation
time, while improving the F1-score by up to 13%.

The remainder of this paper is organized as follows. Section 2
details the RDA, its variants and the overall WAF, in which such
algorithm is deployed. The empirical evaluation is presented in
Section 3. Section 4 is dedicated to conclusion and future works.

2 PROPOSED METHODOLOGY

This section presents the web anomaly detection using autoen-
coder. The idea is to train the classification model on the requests
exclusively from the legitimate data class. We compute the recon-
struction error for a given request and render the decision based on

a predefined threshold. The architecture regarding the web anomaly
detection using autoencoder is shown in Figure 1.

2.1 Data preprocessing

The data preprocessing is based on the URL Tokenizing to col-
lect the method, absolute path and query parameters from the
HTTP/HTTPS requests. The aim is to reduce the variability and
capture the important information to detect malicious patterns.
Liang et al. [9] argued that the anomalies can be found using path
and parameter structure of the HTTP GET. We extend their method,
not only to preprocess the GET, but the POST and PUT queries.
This procedure includes:

• Map the upper-case letters into the corresponding lower-
case ones

• Replace numerical values by <NV>, while other string values
are substituted by the <SV> token in the query values

• Use <BD> to divide the header and body in the PUT and
POST requests

• Put the method at the beginning of the input query

We note that special characters are not changed during the URL
Tokenizing. These characters are essential to differentiate the ma-
licious from legitimate sequences. Unlike the work of Liang et al.,
this paper does not consider the word embedding. Instead, the
characters are directly replaced by numbers in accordance with
the ASCII coding table. This vector is subsequently normalized
using the max-min data scaling and is fed into the autoencoder as
described in the following section.

2.2 Autoencoder

Autoencoder [1] is a neural network that is trained to learn a repre-
sentation for a dataset. It is composed of two different components:
an encoder that maps the original input x to a hidden layer H with
a function h = f (x) and a decoder, whose primary aim is to pro-
duce the reconstruction x’ = д(h) [5]. In the simplest form, the
autoencoder can be summarized as

h = σ (W1x + b1) (1)
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Figure 2: The general autoencoder architecture.

x’ = σ (W2h + b2) (2)

where σ is an activation function andbi is bias vector.Wiϵ�
Idi×Odi

is the parametermatrix of the i-th layer, projecting a Idi dimensional
input into an Odi dimensional output. The autoencoder tries to
minimize the reconstruction error between the input value x and
reconstructed value x’. The reconstruction error can be computed
using either the L2 norm (Eq. 3) or the cross entropy (Eq. 4) as

minL = minE(x, x’) = min‖x − x’‖ (3)

L(x − x’) = −

M∑
c=1

x ′c log(xc ) (4)

There are several types of the autoencoder, including Vanilla,
Deep and Regularized Autoencoder [5].

• Vanilla Autoencoder (VA) is the simplest autoencoder. It is a
neural network with one hidden layer H. H has less dimen-
sions as compared to the input layer. Vanilla Autoencoder
learns how to reconstruct the input using Adam optimizer
and the mean squared error loss function.

• Deep Autoencoder (DA) is the extension of Vanilla version
with three fully connected hidden layers. This architecture
is presented in Figure 2 . The DA can be trained with lim-
ited training samples. It is also able to capture more abstract
representation from the data in order to improve the classifi-
cation performance.

• Regularized Autoencoder (RA) encourages the model to have
other properties, such as rank deficiency and sparsity apart
from the ability of reconstructing the input x. The RA can
be either spare or denoising autoencoder. Spare autoencoder
involves a sparsity penalty Ω(H) in the core layer H, while
the denoising autoencoder changes the reconstruction error
term of the cost function to generalize cases that are not
presented in the training dataset.

In this paper, the RA is also combined with a deep architecture
to form the so-called Regularized Deep Autoencoder (RDA). The
construction of the autoencoder is based on samples from the legit-
imate data class [12]. Its motivation is to learn an embedded low

WAF

Modsecurity
Anomaly 
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Requests

Normal Requests

Tokenized Requests

 Normal/Abnormal

Redis Database

#Send unknown requests to the ADM
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Rule Sets

Web Servers
Web Servers

Web Servers
Web Servers

Web Servers
Web Servers

Figure 3: Web Application Firewall based on the combina-

tion of the RDA and Modsecurity.

dimensional subspace that can represent the normal requests with
minimal reconstruction error.

2.3 Selecting the appropriate threshold

The detection module receives the HTTP/HTTPS request as an
input and determines if the request is malicious or not. This process
is often complex since the complicated interactions, such as co-
occurrence and others of method called are all involved in the
decision making. These complexities make the autoencoder an
ideal candidate for eliminate web attacks. In the autoencoder, it
is essential to select the appropriate threshold, which triggers the
trade-off between True Positive (TPR) and False Positive Rate (FPR).
Generally, the threshold θ can be computed based on the average
reconstruction error Ē and standard deviation s as.

Ē =
1

N

N∑
i=1

‖x − x’‖ =
1

N

N∑
i=1

(

n∑
j=1

(x j − x ′j )
2) (5)

s =

√∑N
i=1(Ei − Ē)2

N − 1
(6)

θ = Ē + α × s (7)

where N and n are the number and dimension of the input vec-
tors, used to validate the model. α is a trade-off parameter that is
selected depending on the training dataset and the classification
problem at hand. In this paper, α is set equal to 3. The standard
deviation serves as a measure of uncertainty. For a normal distribu-
tion, three standard deviations include 99.73% of the samples. We
assume that there are several outliers in the training dataset. This
α value allows us to eliminate the outliers and obtain a compact
and reliable description around the legitimate class. Given the pre-
defined threshold θ , a request is considered as malicious when its
reconstruction error is larger than θ .

2.4 The overall architecture

In the present work, the autoencoder is also deployed in a WAF to
detect and eliminate web attacks. We have selected Modsecurity, an
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open-source WAF that has evolved to provide the filtering capabili-
ties along with other security features in a wide range of platforms,
including NGINX, Microsoft IIS and Apache HTTP Server [15]. As
can be seen in Figure 3, Modsecurity is utilized to preprocess the
input HTTP request and produce a tokenized vector. Such vector
is pushed into the reliable REDIS queue, who acts as a messag-
ing server to implement processing the different messaging tasks.
The role of the Anomaly Detection Module (ADM) is to determine
whether a request is malicious. It then responses to Modsecurity,
which is equipped with a mechanism to block unwanted HTTP
queries before they can enter the web application. The commu-
nication between the ADM and Modsecurity is achieved via two
different Lua APIs, namely SendRequestToADM.lua and GetPre-
dictionFromADM.lua. The Lua APIs are lightweight and can be
executed internally as part of the web server.

3 EXPERIMENTS

In this section, we evaluate the original Vanilla Autoencoder and
its variants and compare these algorithms with other one-class
methods, whose classificationmodel is constructed using data solely
from the legitimate class. We also assess the architecture, where
the autoencoder is combined with Modsecurity to protect a website
in real time. All the codes in the present work were written using
Keras [2] and Scikit-Learn [13] libraries. They were executed on a
PC, running Ubuntu 16.04 with Intel Core i5 and 8 GB RAM.

3.1 Data specification

The autoencoder neural networks are evaluated and benchmarked
on the CSIC 2010 dataset. This dataset is divided into two subsets.
The first subset contains 36,000 normal request that can be used
to train the unsupervised learning methods. The second subset
contains 36,000 normal and more than 25,000 abnormal requests,
that can serve for testing purpose. The web attacks in CSIC 2010
involve SQL injection, XSS, CRLF injection, buffer overflows and
many others.

In addition, we evaluate the different algorithms in a practical
web application, whichwas developed on theWordPress framework.
Particularly, we execute a number of web attacks using the Burp
Suite Professional [19], a powerful web scanner that covers over
100 generic vulnerabilities, including SQL injection, XSS and other
OWASP top 10 vulnerabilities [11]. The queries are then manually
labeled based on the expert knowledge. There is a total of 16,742
normal and 14,824 abnormal requests in the collection.

3.2 Evaluation measures

The evaluation metrics that are used in the present work include
Precision, Recall, F1-score and Area Under the ROC Curve (AUC).
These are computed using True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN). TP and TN are the
number of malicious and legitimate HTTP/HTTPS requests that
are correctly classified. FP is the number of normal requests that
are incorrectly classified as malicious, while FN is the number of
abnormal requests that are incorrectly classified as legitimate. We
have that

Precision =
TP

TP + FP
(8)
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Recall =
TP

TP + FN
(9)

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)
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Table 1: The precision, recall and F1-score, related to the RDA and other methods on the CSIC 2010 dataset

Method Precision Recall F1-score

Modsecurity + CRS (PL = 1) 1.0000 0.6517 0.7890
Modsecurity + CRS (PL = 2) 0.9368 0.6853 0.7915
Modsecurity + CRS (PL = 3) 0.8414 0.7452 0.7904
Modsecurity + CRS (PL = 4) 0.6820 0.7908 0.7321
One-class SVM + 30 features [10] 0.5963 0.5871 0.5916
Stacked Autoencoder + Isolation Forest [17] 0.8029 0.8832 0.8412
Regularized Deep Autoencoder 0.9464 0.9462 0.9463
LSTM network [18] 0.9770 0.9790 0.9780

Table 2: The precision, recall and F1-score, related to the

RDA and other methods on the real-world dataset

Method Precision Recall F1-score

Modsecurity + CRS (PL = 1) 1.0000 0.5246 0.6881
Modsecurity + CRS (PL = 2) 0.9981 0.5347 0.6963
Modsecurity + CRS (PL = 3) 0.9806 0.5745 0.7245
Modsecurity + CRS (PL = 4) 0.9678 0.6036 0.7434
Regularized Deep Autoencoder 0.9533 0.9528 0.9530
LSTM network [18] 0.9860 0.9859 0.9859

F1-score is the harmonic mean of the Precision and Recall. AUC
provides a single measure that can be interpreted as the average
True Positive Rate (TPR) over the entire range of possible False Pos-
itive Rate (FPR). The computational complexity is also considered
in this work. It is measured by the time that the web server requires
to process a single request.

3.3 Results

Figure 4 illustrates the performance of the autoencoder variants on
the CSIC 2010 dataset. The intuitive motivation to select the best
candidate that can be deployed in combination with Modsecurity.
It is observed that the original Regularized Autoencoder achieves
the lowest AUC (0.9823). The Regularized Deep Autoencoder (RDA)
(0.9890 AUC) is proved to outperform the Vanilla Autoencoder
(0.9836 AUC) and the Deep Autoencoder (0.9858 AUC). Although
the gap is relatively small, the better TPR is achieved at all the
FPR values. Similar observations can be obtained on the real-world
dataset (see Figure 5 for more detail). Based on these observations,
we have selected the RDA and implemented it with Modsecurity to
detect malicious patterns.

In Tables 1, 2, we compare the RDA with other supervised learn-
ing methods, including the Stacked Autoencoder and Isolation For-
est in [17]. The OWASP Modsecurity Core Rule Set (CRS) is a set
of signatures, which is able to protect web application from a wide
variety of attacks. Modsecurity Core Rule Set can trigger action
using the anomaly scores corresponding to each HTTP request.
The action can be either passing or dropping the request. The CRS
provides the Paranoia Level (PL) setting that allows us to select
the desired level of rule checks. As the PL increases, the CRS in-
troduces additional rules, giving a high level of protection [15]. It
is obvious that an increase in the PL can lead to an increase in

the Recall and a decrease in the Precision. Table 1 also illustrates
the accuracy of the one-class SVM when trained using 30 differ-
ent features. The features are directly extracted from the HTTP
queries based on the work of Nguyen et al. [10]. One-class SVM has
been proved to outperform other conventional one-class methods
in various application domains. This observation implies that the
hand-crafted features are not a reliable source of information to
train the unsupervised learning methods in order to detect web
attacks.

The RDA is demonstrated to be inferior to the Long Short-Term
Memory (LSTM) network [18]. It has to be noted that the LSTM
network is discriminative. Model that is trained using data from
both malicious and legitimate classes is definitely better that the
model that is trained using data from one side. The LSTM however
requires the requests to be labeled, which is not always possible in
practice. In the same configuration setting, the RDA is much better
than the stacked autoencoder in [17]. In the RDA, we preprocess
the requests, and thus, extracting essential information to build
the classification model. Decision is directly rendered using the
reconstruction error rather than the isolation forest.

In Table 3, we assess the RDA ability to detect common web
application security vulnerabilities on the real-world dataset. It can
be highlighted that this algorithm is able to recognize most of the
injection attacks, while the accuracy on XSS is approximately 96%.
Clearly, the RDA provides a viable option to eliminate the malicious
HTTP requests.

In Table 4, the RDA is coupled with Modsecurity to protect a
website in real time. In general, it is important to provide a balance
between security and the system performance. The extra second
the web application firewall spends on scanning is an extra second
the user must wait for the response. In order to validate the above
combination, we have run a script to execute 31,566 requests with
10 concurrent threats, which are equivalent to 10 users accessing to
the web server at the same time. From Table 4, we observe that the
RDA is comparable to Apache (without WAF) in terms of average
computation time. It should be noted that Apache is not equipped
with blocking option and must handle all the incoming requests.
Modsecurity has a slightly better performance with respect to the
RDA and requires only 4.9 milliseconds to process a single request.
The LSTM is computationally expensive. Hence, it cannot be de-
ployed in the practical applications.
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Table 3: The RDA performance on the common web application security vulnerabilities, which is evaluated using the real-

world dataset

Attacks # of Requests # of Detected Request Recall

SQL Injection 7,858 7,472 0.9509
Cross-site Scripting(XSS) 1,112 1,064 0.9604
XPath Injection 2,329 2,066 0.8871
Local File Inclusion(LFI) 663 535 0.8069
Sever-side Template Injection 1,053 996 0.9459
Code Injection 808 688 0.8515
OS command Injection 81 81 1.0000
Server side Request Forgery 205 205 1.0000
Others 715 652 0.9118

Table 4: The computation time ofRDA,when combinedwith

Modsecurity and other methods

Method Computation time

Apache 5.1 ms/request
Modsecurity + CRS 4.9 ms/request
Modsecurity + RDA 5.1 ms/request
LSTM network [18] 23.8 ms/request

4 CONCLUSIONS

This paper proposes the use of autoencoder in detecting web attacks.
The autoencoder receives in input a tokenized request. It then classi-
fies whether the request is deemed to be malicious. Experiments on
the CSIC 2010 dataset demonstrate that the Regularized Deep Au-
toencoder (RDA) outperforms the other autoencoder variants. This
algorithm is able to achieve a better performance with respect to
the one-class SVM that is trained using the hand-crafted attributes.
We also developed an architecture, where the RDA is coupled with
the well-known Modsecurity to protect a website. Such website
is based on the WordPress framework. The RDA is proved to be
comparable to the original Modsecurity in terms of computation
time and hence, being amenable to immediate applications.
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